Stress Fractures in the Lower Extremity

Christopher R. Hood JR, DPM
Premier Orthopaedics and Sports Medicine, Malvern PA
Fellowship Trained Foot and Ankle Surgeon
Disclosures

• I have no disclosures.

• There are industry and internet pictures/names used in this presentation, taken for representation purposes without bias.

All opinions expressed in the presentation are that of Christopher R. Hood, DPM, and not that of the companies represented in the presentation.
Roadmap

• Pathophysiology and Epidemiology
 – Pathophys
 – Intrinsic / Extrinsic Factors
 – Differentials
• The Physical Exam
 – Diagnosis
 – Imaging
• Treatments
• Cases

#GoldfarbCC17
#stressfracture
#osteopenia
#osteoporosis
#vitamind
Why Is this Important?

• 10% of all sports related injuries
 – Up to 30% in some sports (running)
• Incidence
 – 1% of “all” recreational athletes
 – 20% of “elite” athletes
• 90% in the LE’s
 – Tibia = 49.1% (25-75%)
 – Tarsals = 25.3% [Calcaneus (21-28%)]
 – Metatarsals = 8.8% (17-35%)
• Significance of fracture
 – Location, Nature

Mandell JC. Skel Radol, 2017. 28374052
Matheson GO. AmJS M, 1987. 3812860
Robertson AJM. WJO, 2017. PMC5359760
PATHOPHYSIOLOGY & EPIDEMIOLOGY
Getting the Lingo

• **Stress Fracture (SFx)**

 – Fracture of *normal* bone exposed to abnormal stress.

 • Seen in athletes, military personnel
 • ≈“Fatigue fracture” in orthopaedic literature

• **Insufficiency Fracture (IFx)**

 – Fracture of *abnormal* bone exposed to normal stress

 • Secondary to untreated Osteoporosis, Infection, Tumor
 • Sedentary lifestyle*
 • MC = Elderly, pelvic
Wolff’s Law
(Julius Wolff, 1836-1902)

• Wolff’s Law = bone responds to stress by continual remodeling to ↑ strengt
 – Greatest amount of bone is laid down in area of greatest applied stress
 • Bone resorption (osteoclasts) ↔ bone synthesis (osteoblasts)

• SFx Triad: Activity that is...
 – New/increased,
 – Relatively strenuous,
 – Repeated
Wolff’s Law

Wolff’s Law

Stress Fracture

Mandell JC. Skel Radol, 2017. 28374052
Pathophysiology

- Subthreshold loading \rightarrow microcracks

- Continue load = crack propagation occurs...
 - Propagation $>$ repair
 - (t) \rightarrow SFx develops
 - Imbalance: bone resorption \neq bone formation

Mandell JC. Skel Radol, 2017. 28374052
Explaining to a patient...

• Medically
 – Fatigue & Overuse \(\rightarrow \)
 Like a muscle strain
 – Intense exercise
 • Bone formation lags behind (\(<\)) bone resproption

• Real world
 – “Paper-clip”
Risk Factors

• **Intrinsic**
 – Metabolic
 – Anatomic

• **Extrinsic**
 – Training regimen
 – Diet
 – Equipment
Intrinsic Factors

<table>
<thead>
<tr>
<th>Category</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anatomy</td>
<td>- Bone
- Muscular strength;
- Anatomic alignment</td>
</tr>
<tr>
<td>Gender</td>
<td>- Narrower bones, lower bone mineral density</td>
</tr>
<tr>
<td>Collagen abnormalities</td>
<td></td>
</tr>
<tr>
<td>Metabolic bone disorders</td>
<td></td>
</tr>
<tr>
<td>Vascular supply</td>
<td></td>
</tr>
<tr>
<td>Nutritional</td>
<td>- Vitamin deficiencies;
- Diet;
- Smoking; Alcohol</td>
</tr>
<tr>
<td>Hormonal imbalance</td>
<td>- Female = estrogen deficiency
- Male (athletes) = testosterone → inhibits IL-6, osteoclast production, activity</td>
</tr>
<tr>
<td>Sleep deprivation</td>
<td></td>
</tr>
</tbody>
</table>
Women and SFx

- Female Athlete Triad:
 - Disordered eating
 - Decreased caloric intake
 - Amenorrhoea
 - Osteoporosis

- Risks
 - 5-21% w one symptom
 - 21-30% w two symptoms
 - 29-50% w all three symptoms.

- BMI
 - RF w BMI <19-21kg/m²

- Menstruation Abnormalities
 - Low bone mineral density
 - Exercise induced
 - Pre/Menopause

Matzkin M. JAAOS, 2015. 26111876
Extrinsic Factors

- Type of sport
- Training regimen
 - Schedule / Recovery (?)
 - Posture, gait, foot strike
 - Loads
- Training surfaces / environment
- Poor equipment (shoe gear)
- Iatrogenic
Differential Diagnosis

- MTSS / “Shin Splints” (PM shaft pain)
- Stress reaction / marrow edema
- Growth arrest lines
- Periostitis
- Infection (Chronic OM)
- Avulsion injury / muscle strain
- Tendinopathy
- Bursitis
- Neoplasm (osteoid osteoma; osteosarcoma)
- Exertional compartment syndrome
- Nerve / Artery Entrapment

NOTE: Differentials based on either presenting symptoms, physical exam, or imaging modality evaluation.
THE PATIENT EXAM / EXPERIENCE
“Chief Complaint”

• **Focal / pin-point pain** or tenderness to a particular location (66-81%)

• **Edema** (18-44%)
 – Pain/edema increases with time (day), duration on feet, increased activity

• **Exertional** pain

• **Aching** pain
Playing Detective

• History of un-acclimated / un-conditioned and repeated activity, limited rest.
 – Training: ↑ in volume / intensity; change in technique/surface; alteration of footgear; change in season sport (surface / footgear).

• Sequence / Evolution = pain after exercise > pain during exercise > pain without exercise.
 – Load related pain.

• General health, medications, diet, menstrual history (females).
Diagnosis

Physical Exam

- Bone tenderness
 - Long Bone = Direct palpation
 - Calcaneus = Squeeze
- Pain w bone “bending”
 - Metatarsals
 - MTPJ ROM DFX/PVX → placing bone under compression/tension and strains → cx pain
- Pain w tuning fork test
- Localized swelling
 - Tissue edema; bone callus

Biomechanical Evaluation

- LLD
 - 70% incidence w LE SFx
- Joint ROM / Stability
- Muscle Strength / Flexibility
- Alignment
 - Limb
 - Foot
- Gait analysis
- Shoe analysis
Imaging Modalities – XRs

• Very specific IF a SFx is seen
 – Periosteal bone formation, horizontal / obl linear sclerosis/scar, endosteal callus, frank fx line

• However, XRs can be false(-) for up to 3 months after symptom onset.
 – Early XR (1-3wk) are often normal w detection as low as 10-15% and serial XRs are diagnostic in 50% cases.
 • Lagging effect to symptom and perceived diagnosis ~ 10-21d
 • s/p 3 wk sensitivity = 30-70%
Imaging Modalities – MRI

• Able to detect abnormalities weeks before XR lesion presents
 – Similar sensitivity, greater specificity to bone scan
• Identifies concurrent muscular or ligamentous injury or strain
• Best w T2/STIR to identify bone marrow edema, (the hallmark of SFx)
 – Periosteal and BM Edema
 – Intracortical signal changes
 – Intramedullary fracture lines
• Rec’d as secondary imaging and gold standard by ACR
Imaging Modalities

• CT
 – Detect cortical fractures
 – For: Navicular, Diaphyseal bone

• Bone Scan
 – Tc-99m = inc uptake all 3 phz
 • Soft tissue injuries = inc uptake in phz 1-2, not 3
 – Lacks specificity
 – Detects osteoblastic activity associated w remodeling
MRI – Radiological Grading

<table>
<thead>
<tr>
<th>Grade</th>
<th>Radiograph</th>
<th>Bone Scan</th>
<th>MR Imaging†</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Normal</td>
<td>Mild uptake confined to one cortex</td>
<td>Positive STIR image</td>
<td>Rest for 3 weeks</td>
</tr>
<tr>
<td>2</td>
<td>Normal</td>
<td>Moderate activity; larger lesion confined to unicortical area</td>
<td>Positive STIR and T2-weighted images</td>
<td>Rest for 3-6 weeks</td>
</tr>
<tr>
<td>3</td>
<td>Discrete line (+/-), periosteal reaction (+/-)</td>
<td>Increased activity (>50% width of bone)</td>
<td>No definite cortical break; positive T1- and T2-weighted images</td>
<td>Rest for 12-16 weeks</td>
</tr>
<tr>
<td>4</td>
<td>Fracture or periosteal reaction</td>
<td>More intense bicortical uptake</td>
<td>Fracture line; positive T1- and T2-weighted images</td>
<td>Rest for 16+ weeks</td>
</tr>
</tbody>
</table>

Table 1 – Grading of stress fracture: MRI and plain radiography

<table>
<thead>
<tr>
<th>Grade</th>
<th>STIR signal change</th>
<th>T2 signal change</th>
<th>T1 signal change</th>
<th>Plain x-ray film</th>
<th>Average time to return to play (weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Present</td>
<td>None</td>
<td>None</td>
<td>Negative</td>
<td>3.3</td>
</tr>
<tr>
<td>2</td>
<td>Present</td>
<td>Present</td>
<td>None</td>
<td>Negative</td>
<td>5.5</td>
</tr>
<tr>
<td>3</td>
<td>Present</td>
<td>Present</td>
<td>Present</td>
<td>Periosteal reaction</td>
<td>11.4</td>
</tr>
<tr>
<td>4</td>
<td>Present</td>
<td>Fracture line (or on T1)</td>
<td>Fracture line (or on T2)</td>
<td>Periosteal reaction or fracture line</td>
<td>14.3</td>
</tr>
</tbody>
</table>

Fredericson Classification
(MRI Tibial Grading)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Illustration</th>
<th>Grade</th>
<th>Illustration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 0: Normal MR</td>
<td></td>
<td>Grade 3: Moderate bone marrow edema seen on both T2-weighted images and T1-weighted images; return to sport in mean 39-44 days</td>
<td></td>
</tr>
<tr>
<td>Grade 1: Periosteal edema only</td>
<td></td>
<td>Grade 4a: Cortical signal abnormality, not linear in morphology; return to sport in mean 39-44 days</td>
<td></td>
</tr>
<tr>
<td>Grade 2: Mild bone marrow edema seen on T2-weighted images only</td>
<td></td>
<td>Grade 4b: Linear cortical signal abnormality; return to sport in mean 71 days</td>
<td></td>
</tr>
</tbody>
</table>

Return to sport in mean 39-44 days.
MRI
(fibula Sfx)
XR v MRI
Imaging: Directing the Treatment

• OV 1 = XRs
 – Positive = Treat at SFx
 – Negative, with high suspicion = Treat as SFx
 – AND return in 2-3 weeks

• OV 2 = XRs
 – Positive = Treat at SFx
 – Negative = MRI to confirm a pathology

• NOTE: MRI may be warranted at OV1 if:
 – High level athlete;
 – High Risk SFx
Determining Optimal Management

1. Optimal Imaging Modality
2. High Risk v Low Risk
3. Conservative (v) Surgical
 3a. Conservative → Rehab Schedule?
 3b. Surgical → Best Technique?
4. When To RTS?
5. Preventable Programs?

Robertson GAJ. WJO, 2017. PMC5359760
Low vs. High Risk SFx

- Low-risk stress fractures
 - posteromedial tibia (24-73%)
 - 2nd/3rd metatarsals (17-35%)
 - calcaneus (21-28%)
 - distal fibula
 - cuboid
 - cuneiforms

- High-risk stress fractures
 - anterior tibial cortex
 - medial malleolus
 - navicular
 - talus
 - base of fifth metatarsal
 - base of second metatarsal
 - hallux sesamoids

Mandell JC. Skel Radol, 2017. 28343329
Treatment Options

Low Risk

- Heal well with activity modification, maintain WBing.
- Treat w 1-6 wks → trans
- “Compressive” Forces
 - MC
 - Tibia – Post-Med Distal
 - Calcaneus
 - Metatarsals (1-4)
 - LC
 - Distal fibula
 - Cuboid, Cuneiforms

High Risk

- Predilection for progression to complete fx, delayed or non-union
- Treat as acute fxs
- “Tensile” Forces ± Poor Vascularity
- Includes:
 - Tibia – Anterior Cortex*
 - Medial Malleolous
 - Talus
 - Navicular*
 - 5th MT base*; 2nd MT neck
 - Hallux Sesamoids
Good Read(s)

Stress fractures of the foot and ankle, part 1: biomechanics of bone and principles of imaging and treatment

Jacob C. Mandell, Bharti Khurana, Stacy E. Smith

Received: 20 January 2017 / Revised: 22 February 2017 / Accepted: 13 March 2017

PMID: 28374052 & 28343329

Stress Fractures: Diagnosis, Treatment, and Prevention

Deepak S. Patel, M.D., Rush-Copley Family Medicine Residency, Aurora, Illinois

Matt Roth, M.D., The Toledo Hospital Primary Care Sports Medicine Fellowship, Toledo, NEHA KAPIL, M.D., Rush-Copley Family Medicine Residency, Aurora, Illinois

American Family Physician www.aafp.org/afp Volume 83, Number 1 • January 1, 2011

PMID: 21888126

World Journal of Orthopedics

Submit a Manuscript: http://www.wjgnet.com/wjo/
DOI: 10.5312/wjo.v8i3.242

Lower limb stress fractures in sport: Optimising their management and outcome

Greg A J Robertson, Alexander M Wood

PMID: PMC5359760

PMID: PMC219443
Treatment – Bone Specific

Fibula
- Location:

Medial Malleolus (HR)
- Rare, 0.6-4%
- Athletes: run/jump sport
Treatment – Bone Specific

Fibula
• Location:

Talus (HR)

Mandell JC. Skel Radol, 2017. 28343329
Treatment – Bone Specific

Navicular (HR)
- Location: Central 3rd
- Pain (av) 6mth b/f dx

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>Stress reaction; signal change on MRI noted, but stress fracture not imaged on CT</td>
</tr>
<tr>
<td>1</td>
<td>Dorsal cortical fracture on coronal image</td>
</tr>
<tr>
<td>2</td>
<td>Fracture extends into navicular body on coronal image</td>
</tr>
<tr>
<td>3</td>
<td>Complete propagation of fracture to second cortex (medial, lateral or plantar) on coronal image</td>
</tr>
</tbody>
</table>

Abbreviations: CT, computed tomography; MRI, magnetic resonance imaging. Adapted from Saxena et al (4) and Saxena and Fullem (16).

Calcaneus
- Location:
 - Posterior/tuber (56%)
 - Middle (18%); Anterior (26%)
- Conservative care:
 - Immobilization
 - Restriction of activity

Saxena A. JFAS, 2017. 17144953
Mandell JC. Skel Radol, 2017. 28343329
Treatment – Bone Specific

Sesamoids (HR)
- <4% F&A, < 1% running injuries
- Location: Tib > Fib
- Treatment:
 - Acute = 6 wks NWB w cast extending to toe top, prevents dfx
 - Long Term = Mortons extension; dancers padding
 - Sx = pain < 6mths
 - Sesamoidectomy

Metatarsals
- Location:
 - 2nd (52%); 3rd (35%); 1st (8%)
 - 2nd-4th (diaphyseal)
 - Dancers = bases
- Risk:
 - LR = 2-4 diaphyseal
 - HR = 5MT “Jones”
- Conservative Care:
 - Immobilization
 - Restriction of activity
 - RTS once tenderness resolves
 - Modify...?
- Sx reserved for:
 - Converted Fx with dp/angle
 - Symptomatic non-union
Treatment Options – CRH

• **Metatarsal**

 – OV#1 = XR; WBAT CAM/SxShoe, RTC 3-4 wks

 – OV#2 = Re-eval w XR/PE. Goal 80% improvement to transition to sneaker. 1-2 wks ADLs b/f slow RTS

 • If not met goal (80%), WBAT CAM x2 wks and RT (continue until reach goal)

 • “Let pain be your guide.”
Treatment Options – CRH

• Gradual build up to activities/sport
 – *Gradual return to normal after immobilization
 – Reduced SFx risk w reduce stride length, running speed, and mileage

• Strengthen muscles in LE
 – Role of muscles = muscle fatigue, concentrating forces to localized areas
 – Muscle action function to dissipate energy and reduce tensile bone stress

• Maintain health diet

• Vitamins? (D, Ca)
 – SUN!
Additional Considerations – Females

- Women
 - SF related to activity? Age?
 - Osteoporosis? “Fragility Fracture”?
 - If ~50yo w no DEXA, refer to PCP
 - Vitamin D, Ca, Mg, Phos labs?
 - Hormone replacement therapy?

- H/O stress fractures? Fragility fractures (hip, femur)?

- Referral to either rheumatology, osteoporosis, or bone health clinic
Additional Considerations – Athletes

• Identify and correct predisposing factors
• Identify and correct training errors (MC)
 – Physical therapy and sport-specific trainers
 • Video-monitoring technique \rightarrow correct
 • Force-plate weight distribution \rightarrow correct
 • Posture \rightarrow correct
 – Cross-Train
• Education
• “Get fit quick” programs
• Assess shoegear = type and condition
 – Insoles? Viscoelastic = dampening forces
 – Change every 3-6 months (cheap EVA foam, compacts, lose shock absorption quality)
CASE EXAMPLES
Case 1 – RDT (45♀)

- History of 9 days of acute foot pain, moderate in level, gradually increasing and sharp with WBing. Localized about the base of the 2nd toe. Relieved with rest.
- PMH = hypertension
- PSxH = n/a
- Social = ØT/A/D
- FH = n/a
- Meds = Amlodipine, Sertraline
- BMI = 22.14 kg/m²
 - 5’4, 129 lbs
Case 1 – RDT (45♀)

- OV #1 (9/29/16)
- Physical Exam =
 - No obvious findings.
 - Acute tenderness to the 2nd metatarsal neck/head region on bone palpation.
- Dx = L-2nd met neck stress fx
- Tx =
 - Sx shoe WBAT, rest;
 - Labs = Vit D, Ca, Mg, Phos;
 - RT 3-4 wks.
Case 1 – RDT (45♀)

• OV #2 (10/17/16)
 – Reports no pain to foot after 3 wks WBAT Sx Shoe.
 – Did not get labs.
 – Phys Exam = mild tenderness to 2nd met neck
 – Tx =
 • Cont’d Sx Shoe WBAT 2-3 wks w sneaker transition as tol
Case 1 – RDT (45♀)

• OV #3 (11/16/16)
 – Reports min sorenes after sneaker transition, but improving qd.
 – Phys Exam = mild tenderness; palpable callus.
 – Tx = Cont’d sneaker WBAT 2-3 wks, then slow as tol, activity inc.
 – Discharged.
Case 1 – RDT (45♀)
Case 2 – SJ (38♀)

- Patient initially presented for plantar fasciitis, was treated twice over 4 weeks and told to follow up in 6 wks.
- Presents 2 weeks later with acute lateral forefoot pain of 1 week duration after her PF was improving, and returned to her cardio activities.

- PMH = hypothyroid
- PSxH = appendectomy
- Social = ØT/D, min EtOH
- FH = AS (brother)
- Meds = Synthroid
- BMI = 32.45 kg/m²
 - 5’5, 195 lbs
Case 2 – SJ (38♀)

- OV #1 (9/15/16)
- Physical Exam =
 - No obvious findings.
 - Acute tenderness to the 4th metatarsal neck/head region on bone palpation.
 - Pain with PFX 4th MTPJ in PFX
- Dx = L-4th met neck stress fx
- Tx =
 - CAM Boot WBAT, rest;
 - Labs = Vit D, Mc, Ca, Phos;
 - RT 3-4 wks.
Case 2 – SJ (38♀)

- OV #2 (10/20/16)
 - Reports min/no pain to foot after 4 wks CAM WBAT, and no pain WBAT w/o CAM at home. No physical activity to date
 - Vit D3 = 35.3
 - Ca = 9.6 / Mg = 2.0 / P = 3.5 (all wnl)
 - Phys Exam = mild tenderness to 4th met neck w/ no pain on 4th MTPJ ROM
 - Tx =
 - Cont’d CAM WBAT 1 wk w sneaker transition as tol
 - Vitamin D3 = 2-5k U/qd
Case 2 – SJ (38♀)

- OV #3 (11/17/16)
 - OOB to sneaker w min pain; reports 60-70% overall improvement
 - Vit D3 = 35.3
 - Ca = 9.6 / Mg = 2.0 / P = 3.5 (all wnl)
 - Phys Exam = mild tenderness to 4th met neck w/ no pain on 4th MTPJ ROM
 - Tx =
 - Cont’d transition to activity as tol;
 - Cont’d supplement.
 - Discharged
Any questions?
References

• Bakalar N. Yogurt may be good for the bones. NYTimes. 16 May 2017. Online.
• Robertson GAJ. Lower limb stress fractures in sport: optimizing their management and outcome. WJO. 2017. 8(3): 242-255.
• NOTE – References listed throughout presentation as:
 – Name. Journal, Year. PMID
Thank you

Question?
Contact me at:
crhoodjr12@gmail.com
@crhoodjrDPM www.footankleresource.com
chood@premierortho.com
www.premierortho.com
610-644-6900

#GoldfarbCC17 #stressfracture #osteopenia #osteoporosis #vitamind